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STRESSES CAUSED BY AN IN-PLANE LINE LOAD USED TO
ROTATE A THIN-WALLED SPHERICAL SATELLITE

By W. Jefferson Stroud and Nancy P. Sykes
Langley Research Center

SUMMARY

The stress resultants and deformations which are brought about by a sinusoidal
in-plane line load acting along a great circle of a spherical satellite of the Echo type are
calculated and are presented in contour plots and in tabular form, The line load is
applied in order to rotate the thin-walled spherical satellite for station-keeping purposes.
The line load is induced by the interaction of a current-carrying wire with the geomag-
netic field. Linear membrane theory and numerical methods are used in the analysis.

INTRODUCTION

One method for obtaining orbit position control of large, inflatable, spherical, pas-
sive communications satellites of the Echo type is to utilize forces caused by solar photon
flux on the satellite's surface. These forces are dependent upon the reflectance, absorp-
tance, and emittance properties of the surface of the satellite. The satellite's surface
could be divided into regions having different values of these properties. By adjusting
the orientation of the satellite so that a desired surface faces the sun, the forces caused
by solar radiation pressure could be modulated and used to control the orbit of, or
"'station keep,' the satellite. To obtain the desired orientation the satellite could be
rotated by torques resulting from the interaction of the earth's magnetic field with elec-
tric current carried by wires mounted on the surface of the satellite. A discussion of
this type of station-keeping system is contained in reference 1.

In the present paper an analysis is made of the stresses in and deformations of a
thin-walled spherical shell with a single current-carrying wire mounted on a great circle
of the sphere and interacting with the geomagnetic field. The interaction causes both
in-plane and radial loads on the sphere. Only the effects of the in-plane component of
the applied line load and the resulting inertia load caused by angular acceleration are
considered. Linear membrane theory and numerical methods are used in the analysis.
Results are given as contour plots and as a table of stresses and displacements over the
surface of the spherical shell,



SYMBOLS

The physical quantities used in this paper are given both in the U.S. Customary
System of Units and in the International System of Units (SI) (ref. 2). Appendix A pre-
sents factors relating these two systems of units.

A=1IBcos B

ay constant associated with homogeneous solution of differential equation
for Np,0 (see eq. (B7))

B flux density of geomagnetic field (see eq. (1))

b direction of geomagnetic field (see figs. 1 and 2)

D bending stiffness

E Young's modulus

dF differential force on wire

dFy in-plane component of dF

dF,. out~of-plane (radial) component of dF

I current in wire (see eq. (1))

1 area moment of inertia of cross section of sphere (see eqgs. (B13) and (B16))
Ip polar mass moment of inertia of sphere (see eq. (7))
K extensional stiffness

dz differential length along wire

Np principal stress, \/Nez + Ngd)z for problem herein
Ng, Nqbv N@d) in-plane stress resultants




Ng 0, Ng 15 -+, Ng i, «-- functions of # which appear as coefficients in power
’ ’ )
series expansion for Ng (see eq. (B4))

N9¢’0, N9¢’1, cery Neqb,i’ functions of 6 which appear as coefficients in power
series expansion for N9¢ (see eq. (C18))

PG’P¢>’Pr loading per unit area in 6, ¢, and radial directions, respectively
r radius of sphere
t wall thickness of sphere
u,v,w displacements in 6§, ¢, and radial directions, respectively
a _ u
" sin @
v shear load (see eq. (B11))
Vg Vs Visee functions of # which appear as coefficients in power series expansion

for v (see eq. (C19))

X, Y,Z axis system (see figs. 1 and 2)
o angular acceleration
B angle between plane of wire and earth's magnetic field (see figs. 1 and 2)

€ g€ <b’7'6’<l> in-plane strains

0,¢ circumferential and meridional coordinates of the spherical coordinate
system (see fig. 2)

AO,A increments in 6 and ¢ directions, respectively, used in the numerical
calculation of Ny

7 Poisson's ratio

£ dummy variable of integration (see eq. (B14))



p mass per unit area of sphere
w relaxation factor
LOADING ON SPHERE
The problem considered in this report is illustrated in figure 1, which shows a

spherical shell with a current-carrying wire attached to the surface along a great circle.
The arrows on the wire indicate the direction of current flow and the arrow at b

Figure 1.- Thin-walled spherical satellite with current-carrying wire attached
to surface along a great circle.

indicates the direction of the geomagnetic field. The interaction of the current flowing
in the wire with the geomagnetic field produces a force on the wire. The magnitude and
direction of this force is given by the vector equation (see ref. 3)

dF =TI xBd 6y
in which
dF differential force, newtons
T current in wire, amperes



B flux density of earth's magnetic field, webers per square meter
dz differential length along wire, meters

The differential force dF can be divided into a component dF; which lies in the plane
of the sphere and a component dF, which is directed normal to the surface of the
sphere, or radially. The magnitude of the in-plane component d¥; is given by the
scalar relation

dFj = IB di cos B sin ¢ (2)

whereas the out-of-plane, or radial, component dFy is given by
dF, = 1B d. sin 8 (3)

An octant of the sphere of figure 1 is shown in greater detail in figure 2. Spherical
coordinates ¢ and 8 are used to locate a point on the surface of the sphere. The
meridional angle ¢ is measured from the Z-axis, which passes through the upper pole.
The circumferential angle 0 is measured from the X-Z plane, which is also the plane
of the wire. Angle B is the angle between the plane of the wire and the direction of
the geomagnetic field, axis b. Axis b lies in the X-Y plane so that angle g is mea-
sured in the same way that angle 0 is measured.

Wire

Current convention

+

Figure 2.- Octant of sphere with current-carrying wire showing differential loading
and spherical coordinates.



If both the angle B and the direction of the current I flowing in the wire are as
shown in figures 1 and 2, then the radial force dFy, which is independent of ¢, is
directed inward and the in-plane force dF;j is directed in the 6 direction.

In this report only the in-plane component of the loading is considered. The con-
stant radial component is treated on page 338 of reference 4. Since linear theory is used
in reference 4 and in the present report, the effects of the two loadings may be

superimposed.
The in-plane line load per unit length, dF; /dl, introduced into the shell by the

current-carrying wire may be written as

dFy .
—— = Asin ¢ (4)
where, from equation (2),

A=1IBcos B (5)
This applied sinusoidal line load (illustrated in fig. 3) gives a resultant torque T on the

shell of magnitude

27
T = ArZsin2¢ do = Arlr (6)
0

From Newton's second law, for rotational motion,

T =Ipo= % rrpa )

~— Sinusoidal in-plane
line load

Figure 3.- Sinusoidal in-plane line load acting along a great circle of a sphere,
causing a resultant applied torque. Top view.



Thus, the angular acceleration is

a=34 (8)
8r2p

The applied torque is equilibrated by an inertia loading which is distributed over the
surface of the shell and which is given by

Py = -prasin ¢ (9)
or, using the value of « just calculated,
3A _.
P9=—ﬁ—81n¢ (10)

Thus, the in-plane line load (eq. (4)) and the surface inertia load (eq. (9)) have been
expressed as a function of the strength of the geomagnetic field, the amount of current
flowing in the wire, the orientation of the wire with respect to the geomagnetic field, the
radius of the spherical shell, the mass density of the sphere, and the position on the
sphere.

SOLUTION OF MEMBRANE SHELL EQUATIONS

Equilibrium Equations and Stress Boundary Conditions

Because of the nature of the loading (all forces tangential to the surface) linear
membrane shell theory is assumed to be adequate for investigating the stresses and
deformations in the present problem. The coordinate system and a loaded shell element
are shown in figures 2 and 4, respectively. The applied in-plane line load acts in the
f-direction along the great circle =0 and 4= 7.

From reference 5 the equilibrium equations
for a nonaxisymmetrically loaded spherical mem-
brane are given by

8N, &N
2+ 2 sin ¢ + 2Ny cos ¢ + Pyrsin ¢ = 0

90 9
(11)
N
aNTZ‘E-Necos ¢ + 8(;) sin¢+N¢) cos ¢
+ P¢r sin ¢ =0 (12)
Ng + qu, =rP, (13)

Figure 4.- Element of a loaded spherical shell.



These equations represent three equations in the three unknown stress resultants Ny,
N¢, and N9¢ which are to be solved in the region 0=6=7,0=¢ =7. For the prob-
lem considered herein, P, = qu = 0; therefore, Ng = -Np-.

A complete set of boundary conditions can be written for 6=0,7 and ¢ =0,7.
From symmetry conditions and from consideration of the applied loading given by equa-
tion (4), boundary conditions on Ny can be written along 6= 0,7. The remaining con-
ditions, those on N (which is equal to -Ng) and Ngg along ¢ = 0,7 and those on
N9<i> along 6 = 0,7, are derived in appendix B. A summary of the stress boundary con-

ditions is as follows:

Along 6=0,

Ng = - zé sin ¢ (14)

Ngg = -gi A cos ¢ (15)
Along 06 =7,

Ng = A .

o =75 sin o) (186)

Nog = % Acos ¢ 17

Along ¢ =0,
_ =3 A&

N¢, = —N9—§Asm 20 (18)

Ngg = g A cos 29 (19)
Along ¢ =,

Ny = —N9=%Asin 20 (20)

Npp = - % A cos 26 (21)
In addition, symmetry conditions provide knowledge of certain stresses along 6 = %
and ¢ = % as follows:
Along 6= %,
Along ¢ =7,

Stresses

Solution for the stress resultant Np.- The governing partial differential equation

obtained by eliminating Ng and Noo from the three equilibrium equations is



32N
a2

2
9°N 3N9

9 4 5 sin ¢ cos ¢ TS + (4 0082¢> -2 sin2q>>N9 + sinch b-0 (24)

962

With first and second derivatives replaced by two- and three-point central-
difference approximations, respectively, equation (24) may be written in difference form
as

Ng(6+A6,0) ~ 2Ng(6,9) + Ny(6-A6,9) Np(6,0+A¢) - Ng(6, p-A¢)
(AQ)Z * 2A¢

5 sin ¢ cos ¢

N9(9’¢+A¢) - ZNG(G’ (,'b) + N9(95¢'A¢)
+ _

ao)? sinZp =0 (25)

+ N9(9,¢)[4 cos2¢> -2 sin2¢]

An iteration technique known as successive overrelaxation (ref. 6) is applied to
equation (25) in the region 0=60=7/2,0 = ¢ = 7. The boundary conditions on Ny are
given in equations (14), (18), (20), and (22). Equation (25) written in successive over-
relaxation form is

(n+1) - -w (n) (n+1) 1
Ny (6,0) = NV (6+40,0) + Ny (0-A6,¢)| ——
? - 2+4cosz¢-2sin2¢-2s—in2§‘dl [9 (r86,9) + o }(AG)Z
(49) (A¢)

+ N(Qn)(e, ¢>+A¢>)[5 sin ¢ cos ¢ sinzdﬂ

286 (a)2
1 5 si . 2
+ NG )(9’¢-A¢)[— Toa fi“@ﬂ - (@ - IN(0,9) (26)

in which w is the relaxation factor and the superscript n refers to the value of Ny
obtained on the nth iteration. The purpose of the relaxation factor w is to speed up
convergence of the procedure. With w = 1.0 the method reduces to the better known
but more slowly converging Gauss-Seidel iteration technique. The determination of an
appropriate value for w is discussed in reference 6. For the calculations performed
in this study the value w = 1.95 was used. In the form given by equation (26), the com-
putation is initiated at the point (6=A#6, ¢p=A¢), which is one station to the right of the

6 = 0 boundary, and proceeds in the 0 direction to the point (6=%-A 0, ¢=Aqb), which is
one station to the left of the 6 =T boundary. The coordinate ¢ is then increased by

2

the increment A¢ and the computation again proceeds from 6#=A89 to 6= % - AG.



This procedure is repeated until equation (26) has been applied to all points in the region
0<9 <17, 0 < ¢ <7. In the present problem, a linear distribution in the 6 direction
using the values of Ny along the lines =0 and 6= 127- was used as an initial approxi-
mation to start the computation. The complete cycle is repeated until convergence is
obtained.

A contour plot of NQ/A is shown in figure 5 and the values are given in table I.

For more details concerning methods of solution and for estimates of the accuracy
of all stress and displacement results, see appendix C.
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Solution for the stress resultant Ngyg.- Equation (11) can be used to determine

Ngg- Introducing into equation (11) the expression for Py given in equation (10) and
dividing the equation by sin ¢ yields

oN oN
6¢ _ 3A . 1 6 _ cos ¢ on
5 "8 "% 5md 8 0% sin o (&)

Equation (27) is integrated numerically in the ¢ direction for Ngg by using a Runge-
Kutta method (ref. 7) for each value of 0. The derivative 0Ng/90 is evaluated numeri-
cally by using the N, distribution stored in the computer. A contour plot of N 09, /A

is shown in figure 6, and the values are given in table I.
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Principal stress resultant Np.- By making use of the fact that N¢ = -Ny, the
principal stress resultant Np can be calculated from the equation

Ny = (Ne2 + N9¢2)1/ 2 (28)

The values of the nondimensionalized principal stress resultant Np /A are shown as a
contour plot in figure 7 and are given in table I.
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Figure 7.- Contour plot of —AD in the hemispherical region 026 2m 020 = m
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Displacements

The displacements u, v, and w inthe 4, ¢, and radial directions, respectively,

are shown in figure 8. They are calculated by using the following strain-displacement
relations (ref. 4, p. 96):

ov

—9;6+W I'Gq) (29)
gg+vcos¢+w sin ¢ = reg sin ¢ (30)
du ov .

3djsmqb—ucos ¢+ — 56 = T 0 sin ¢ (31)

The strains may be expressed in terms of the stresses by using

o= FlMo - 1N = - R N (32)
€o~ Ellt( “N¢) _}i Ng (33)

1 + 2 (34)
Yoo = Nog

The extreme right-hand sides of (32) and (33) were obtained by using Ny = -Nog.

x/

Figure 8.- Displacements u, v, and w in the 8, ®, and radial directions,
respectively, of a point on the surface of a sphere.

13



Solution for the displacements v and w.- The governing partial differential
equation for v is obtained from equations (29) to (34) and is given by

2 2 8N oN
9%y . 9 v . 9% _ .2, 2(1+p) 0 . 2(1 + ) 69
— S1n - —— Sin cos +VvV+—r=-rs —_—

52 ¢ -ppsindcosd b2 | TS0 TR g TTSIN O Topr

(35)

By making use of equilibrium equations (11), (12), and (13) the right-hand side of (35) can
be changed to give

2 2
2V sin2¢ - 2 gin ¢ cos ¢ + v+ ¥ = 4x( + 1)

202 56 a2 it Ny sin ¢ cos ¢ (36)

The boundary conditions for v, which may be obtained from symmetry and antisymmetry

conditions, are as follows:

m

Along 6 =0, >
v=_0 (37)

Along ¢ =0, %’

v=20 (38)
The displacement v is calculated in the same way that the stress resultant Ny
is calculated — by the successive-overrelaxation method. The displacement w is cal-
culated from equation (29). Contour plots of vEt/rA(l + 1) and wEt/rA(1 + p) are
shown in figures 9 and 10, respectively, and the values are given in table I.

Solution for the displacement u/sin ¢.- Rather than solving for the displacement u
in the 6 direction, it seems preferable to solve for u = s—llri_d) The displacement u is
less useful than u because u would be zeroat ¢ =0 and ¢ =7 even if a rigid-body
rotation in the @-direction were allowed. The quantity u/r is the angle of rotation in
the ¢-direction of a point on the shell as the shell deforms. At the pole ¢ =0, the
quantity u/r is the angle of rotation of a line element passing through the pole. The
equation for u is obtained from equation (31) and is given by

aﬁ__g_‘é+_2_1'(1E:+‘l)N9¢51n¢ (35)
o¢ sin2¢

The behavior of 8u/8¢ at the pole ¢ =0 is investigated by expressing the
numerator and denominator on the right-hand side of equation (39) in powers of ¢. The
distribution of u at ¢ =0 is determined by expressing the terms in equation (30) in
powers of ¢. The resulting values of 8u/8¢ and u at the pole are

14



% - LA(LLIE—':"LZ(sin 6 + sin 36) (6=0)  (40)

3rA(1 + 1)

Y T

cos 20 (¢ =0) (41)

Because of the difficulty of accurately evaluating the right-hand side of equation (39) near
(but not at) the pole, interpolation formulas are used in that region. See appendix C for
details,

With the above information it is possible to solve for u by using equation (39) and
a Runge-Kutta method. A contour plot of uEt/rA(l + u)sin ¢ is shown in figure 11 and
the values are given in table 1.
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DISCUSSION OF RESULTS

are

Ng Npgy Np vEt wEt o4 uFt

A’ A’ A’ rAQd+u)y rAl + p) rA(1 + y)sin ¢
shown in figures 5, 6, 7, 9, 10, and 11, respectively, and the values of these nondimen-
sionalized stress resultants and displacements are given in table I. The inadequacy of
linear membrane theory near the line loads is apparent in that the displacement w is
discontinuous at the line loads 6 =0 and 6= 7. In the regions near the lines 6=0
and 6 = 7, bending occurs and/or nonlinear membrane action is present which, because
of antisymmetry, would cause w to be zero. These linear membrane theory results

are expected to be correct a short distance away from the line loads.

Contour plots of

Inasmuch as the station-keeping method referred to herein would be applied to very
thin Echo-like satellites which carry no internal pressure, the compressive stresses
caused by the line loads might bring about buckling of the surface. The magnitude of the
load that would cause buckling can be approximated by making use of results of buckling
tests on similar spheres presented in reference 8. The uniform pressure differential
that caused buckling in a 12.5-ft (3.81-m) diameter sphere of aluminum foil-Mylar
laminate was about 14 percent of the classical buckling pressure differential of

2
- <2> /DK (42)
where D is the bending stiffness and K is the extensional stiffness of the laminate.

The stress resultant Ny caused by this pressure differential is

Ap ,r
_Ll (4 3)

Nn,cl )

For the problem of a line load on a sphere considered in this report, the maximum value
of the principal stress Np is A/2 and occurs at the points <9 =0, ¢ = 127-) and

<9 =7, ¢ = %) If it is assumed that the surface of the sphere buckles at the same maxi-
mum stress level under a nonuniform in-plane load as under uniform external pressure,
then local buckling is initiated when

2
A 0.14% /DR r
3 = 9 (44)

Nn,max

From equation (8), the angular acceleration « is related to the constant A by

a=-25 (45)
8rp

The values of A and «a which cause buckling are now calculated for the cases
of a 12.5-ft (3.81-m) diameter sphere and a 135-ft (41.2-m) diameter sphere. For

18



each case the time t that is required to rotate the initially nonrotating sphere through
an angle of 7/2 radians is also calculated from the formula

1 .2
5 at (46)

T

Note that the value of the angular acceleration « given by equation (45) causes buckling
of the surface of the sphere; therefore, it is considered the upper limit for ¢« If this
constant limiting value of « is used in equation (46), the value of the time t is the
minimum time required to rotate the sphere through an angle of 7/2 radians.

Both spheres are assumed to be fabricated of the aluminum foil-Mylar laminate
discussed in reference 8. For this material, which is nominally identical to that used in
Echo A-12 (Echo II), the material properties are

D = 23.8 X 1072 1bf-in. (2.69 X 10-5 N-m)
K = 3055 Ibf/in. (53.50 X 104 N/m)
p = 1.80 x 106 slugs/in? (40.7 g/m?2)

The values for D and K are taken from reference 8. Results for the two spheres are:

Case 1 Case 2
Diameter = 12,5 ft (3.81 m) Diameter = 135 ft (41.2 m)
r="T75in. (1.90 m) r =810 in. (20.6 m)
A =0.00637 Ibf/in. (1.11 N/m) A =0.00059 1bf/in. (0.103 N/m)
o = 2.83 rad/sec? o = 0.00225 rad/sec2
t=1.05 sec = 37.4 sec

These results indicate angular-acceleration limitations caused by geometrical and
material factors. For the second case, corresponding to the Echo A-12 (Echo II) satel-
lite, the minimum time required for rotation would not appear to impose any undue opera-
tional restrictions. However, other limitations may be associated with concentrated
masses such as battery packs, tracking beacons, and other instrumentation attached to
the surface of the sphere.

CONCLUDING REMARKS

Stress resultants and displacements have been calculated for a sinusoidal in-plane
line load acting along a great circle of a spherical passive communications satellite.
Linear membrane theory is used and, within the framework of this theory, other loadings
may be superimposed on the given one. An example is presented of a thin-walled spheri-
cal satellite with a load applied which initiates local buckling at points on the surface of

19



the satellite. The results from this example indicate how the buckling strength of the
structure may impose limitations on the maximum angular accelerations which can be
applied to the satellite. Also, the results indicate that the order of magnitude of these
limitations for a passive communications satellite of practical proportions is not
prohibitive.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 7, 1967,
124-08-06-02-23.
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APPENDIX A

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General

Conference on Weights and Measures, Paris, October 1960, in Resolution No. 12 (ref. 2).
Conversion factors for the units used herein are given in the following table:

. . U.S. Customary
Physical quantity Unit
Force . . . . .. 1bf
Length. . . . .. in.

Mass . . .. .. slugs

*Multiply value given in U.S. Customary Unit by conversion factor

to obtain equivalent value in SI unit.

Conversion
factor SI Unit
E 3
4.448222 newtons (N)
0.0254 meters (m)
14 593.90 grams (g)

21



APPENDIX B
THE DEVELOPMENT OF BOUNDARY CONDITIONS

Equation (24) is a partial differential equation of the second order in both ¢ and
¢. The unknown in that equation is Nj,. It is also possible to manipulate equations (11),
(12), and (13) to arrive at a similar equation with Nyg as the unknown. In order to
solve either of these two equations it is necessary to have four boundary conditions —
two along # boundaries and two along ¢ boundaries. At present, consider equa-
tion (24) with N, as the unknown (repeated here for convenience):

2 2

9N oN 94N

9 + 5 sin ¢ cos ¢ 8—¢9 + (4 cosch -2 sin2¢>)N9 + sinqu 29 =0 (B1)
8¢

062

The two boundary conditions which are given in equations (14) and (22) can be
developed on the basis of symmetry conditions. These same two boundary conditions
satisfy the requirement for two boundary conditions along # boundaries and are given

by
N6=-2ésin¢> (0 = 0) (B2)

Ng=0 (=7 (B3)

Symmetry of Ny about the line ¢ =% can be used to satisfy one of the two boundary
conditions along ¢ boundaries. The boundary condition which is needed is the dis-

tribution of Ny atapole ¢ =0 or ¢=m.
Let Np be expanded in a power series in ¢ as

Ng=Ngo+Ng 6+ NypdZu . 4+ Nyobe . .. (B4)

in which the coefficients Ny are functions of 6. These coefficients can be obtained
by substituting equation (B4) into equation (B1) in which the trigonometric functions have
also been expanded in powers of ¢. After coefficients of like powers of ¢ are grouped,

equation (B1) becomes
T AR} 1A 2
Npo+4Ng o+ (Ng g+ NG, 1) + (g + 16Ng 2 - 6Ngo)o?+ . .. =0  (BY)

It is valid to set equal to zero the coefficients of each power of ¢ in equation (B5).
When this is done a set of ordinary differential equations is obtained, the first of
which is

N'e',0 +4Ng =0 (B6)
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APPENDIX B

The solution to equation (B6) is

Np o =2y sin 20 + ag cos 26 (B7)

The boundary condition given by equation (B2) is also expanded in a power series. That
series together with equation (B3) provides the following boundary conditions for NG,O:

Ngo = (6 = 0) (B8)
Ng,0 =0 =3 @9

The constant a, is therefore zero, but a; is undetermined. The distribution of Ny
at ¢ =0 is thus known, but the amplitude of that distribution is not known.

The two boundary conditions along ¢ boundaries which are required in order to
obtain a solution to equation (B1) are thus

Ng =a, sin 26 (¢ =0, 7 (B10)

Suppose one arbitrarily assumes that ap is zero, uses that as the boundary condi-
tion at the upper and lower pole, and solves for the stress distribution Ny using succes-
sive overrelaxation in the region 0 =9 = %, 0= ¢ =7. Three examples of the results,
which depend upon the grid size in the ¢ direction, are shown in figure 12. In each of
the three cases the results exhibit wide oscillations very near the pole ¢ = 0, but four

»|Z

0 m g 3 4m 5w 6m Iz 81 91 l0m
80 80 80 80 80 80 80 80 80 80
o
. R . . NQ . i
Figure 12.- The nondimensionalized stress - near ® =0 along the line 8 = 7

a
for three values of A®. For all three cases Kl = 0.
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or five stations away from the pole the solution converges to the correct value of Ny
regardless of the choice of A¢. This phenomenon is demonstrated again in figure 13,
which shows the stress near the pole for three choices of aj. These results suggest
that the smoothness of the Ny distribution near ¢ = 0 can be used as a criterion for

determining the correct value for ay.

The value of a; can be determined to three places by using graphs similar to
those shown in figures 12 and 13. More accuracy can be obtained by using several values
of a; and calculating a table of Ng differences for each value of a; wused. The dif-
ferences on Ny can be taken in the ¢-direction along the line 6 =g in the neighbor-
hood of the upper pole. By using smoothness in the differences as the criterion, the
constant al/A was determined to be -0.37503 + 0.00004. The uncertainty (+0.00004)
arises because the digit in the last place is affected by the mesh size used to converge
on the constant. That this value of a; is essentially correct can be ascertained by

another method.

A top view of the loaded sphere divided along the line of action of the applied line
load is shown in figure 14. Half the line load is assumed to be acting on the left hemi-
sphere, and half on the right. The in-plane inertia load is represented by the arrows

—.380
g
[[ A

AN -.305 —O——

-.315 .
N - .38 ——- -~

> ,c\ -3 — A
A—

=.370 |~
—.365 |~

—.360 -

s 2n s
100 100 100

(0]

N
Figure 13.- The nondimensionalized stress Te near ® = 0 along the line & =217I for

al
three values of X
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R

%sin ¢ X %sin )

s S

-

Figure 14.- Top view of loaded sphere divided along the line of action of the applied
line load.

around the circumference. By considering the vertical® equilibrium of the hemisphere
on the right, for example, it is possible to calculate the distribution of the shear stress
along the cut which passes through the upper and lower poles. This knowledge provides
the required boundary condition.

The vertical™® resultant of the inertia load can be considered to be a shear load V
given by

V= goﬂ S;T Perzsin ¢ sin 9 d6 do (B11)

Arm (B12)

ool w

The shear-stress distribution along the cut can be related to this shear load by using the
familiar equation for the transverse shear-stress distribution in engineering beam theory:

br = 2Ngg = vQ (B13)
i

where b =2t, 7 is the shear stress, and the cross section of the sphere is regarded
as the cross section of an elementary beam.

*Vertical here means the vertical direction in figure 14, which is the x-direction.
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The right-hand hemisphere of figure 14

fUpper pole is shown in a view from center out in fig-
A RN ure 15. The large arrow indicates the direc-
tion of the resultant shear force V. By
using this figure it is seen that if the shear
stress N9¢ is to be calculated at some
point ¢, then Q is the first moment of the
material to the right of ¢, the first moment
being calculated with respect to the line
¢ = 0. Thus

2
Q=2 S;:/ tr2sin £ d£ (B14)

= 2tr2cos ¢ (B15)

The quantity 1, the area moment of inertia
of the cross section of the sphere about the

Figure 15.- Hemisphere showing resultant shear . . .
force V caused by in-plane inertia load Py line ¢ =0, is given by
and the equilibrating shear stress Ngg. i= 7rr3t (B16)

By substituting equations (B12), (B15), and (B16) into (B13), the shear stress distribution
along the line 4#=0 is found to be

Ngg = isé cos ¢ (B17)

A shell element at the pole of the sphere, together with the positive directions for
the stress resultants, is shown in figure 16. The values of the stress resultants along

the line 6=0 are known: Ngg = %A cos ¢, Ng=- & sin ¢, and, in addition, N, = -Ng

everywhere (from eq. (13)). Therefore, the stress resultants for an element in the
orientation shown in figure 16 are known. By using the transformation equations for

plane stress it is possible to obtain the stress
;—Umerpole =0 gt this same point for other orientations — that
B ——  1is, for other values of 6. The stress resultants
Neo as a function of ¢ at the point ¢ =0 are
- given by 3
Ng =— Ny = —gAsin 20 (B18)
3 .
N9¢ N(p = § A sin 20 (Blg)
0= (0 — T 3
Ng Nogg = g A cos 29 (B20)

Figure 16.- Element at pole of sphere.
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A summary of the stress boundary conditions is
Ng=- 2 Asin 20
3
Ngg¢ = 3 A cos 26
NGd) =0
Ng=-2sin¢
2
Ng=0

N9¢=%A cos ¢

(¢ =0)
(¢ =0)

(6 =0)
(-8
(6 =0, )

(B21)
(B22)
(B23)
(B24)
(B25)

(B26)
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ACCURACY OF SOLUTION

Stress Resultant Ny

The distribution for Ny was calculated by using a five-point central-difference
equation modified to make use of a successive overrelaxation technique. That difference
equation (26) is repeated here:

N+ g, 4) - = — /E\Ig‘)(@me, ) + Nng)(G-AG,(b):I—l—z
- + 4 coszqf) -2 sin2¢ - 2sin%¢p (a6)
(a6)? (2¢)2

(n) 5 sin ¢ cos ¢ sin®
+ Nen (9’ ¢+A¢)[ 1n2A¢ + in d)}

(Aa¢)2
(n+1) _ _ 5 sin ¢ cos ¢ sin2¢ _ _ (n)
+Ng* (0,9 Aq;)[ v (Aqb)z] (@ - DN8P(o,0) G
The boundary conditions are
Ng=- 2 sin ¢ (6=0)  (C2)
Ng=0 (9 - g) (C3)
N9=-%ésin 26 (¢=0,m)  (C4)

The overrelaxation factor « was approximated as 1.95. The mesh size used in the
i i = -—-71-- = _..T.T_.
final computation was Af = 500 and A¢ 160 -

The degree of accuracy that could be expected from the numerically obtained Ny
distribution was ascertained by varying the mesh size in both the 6 and ¢ directions
and noting the digits which changed with the mesh size. Except near the pole (O < ¢ < 216)
the changes in Ny occurred in the sixth place. The results for Ny presented in

table I are believed to be correct to the number of digits retained.

Shear-Stress Resultant Ny é

The distribution of the shear-stress resultant N9¢ was calculated from the
equilibrium equation (11), rewritten here in a slightly different form:
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aN N
0d _ 3A _. .1 6 cos ¢
50~ 8 “M?"5ing e 2Noo Sin ¢ (C5)

The following boundary conditions are known:

Ngg = % cos 20 (¢ = 0) (C6)
Ngg = 0 ( = %) ()

The boundary condition (C7) was used to initiate the computation. Equation (C 5) was
integrated in the ¢ direction by using the following Runge-Kutta method (ref. 7):
ki + 2kg + 2kq + k
_ 1+ 2Ky + 2kg + Ky 5
Vo1 =¥n * s +ofn ) (C8)

where

ky = hf(xn, Yn)

In the notation of the present problem,

Yy = Npg
ON

g _ 00
o]

X =

h =246

where A¢ is the mesh size used in the Ny calculation. The integration progressed

from ¢ =-721 toward the pole.

Because it appeared that the error in this integration method was beginning to build

up as the integration neared the upper pole, the values of N 0 in the region 0 < 6 = %,
;—0 =S¢ = g—g were calculated by using equation (12), which, for the present problem,
reduces to
N N
8¢ _ o .
T 2Ny cos ¢ + 59 sin ¢ (C9)
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The same Runge-Kutta method which was used to integrate equation (C5) in the
¢-direction was also used to integrate equation (C9) in the ¢-direction.

By varying the mesh size it was determined that the values of Nypgp as presented
in table I are in error by no more than 1 unit in the last place retained.

The Displacement v

The displacement v in the ¢-direction was calculated by the same method as that
used to calculate Ny, a five-point central-difference equation utilizing successive over-
relaxation. The difference equation is

(n+1) - -w (n) 0. biA sin2¢> _sin ¢ cos ¢

@a®)2  (a6)?2

. V(n+1)(6’¢_A¢)lisin2¢ 4 Sin ¢ cos qu N [V(n)(e_l_A 0,0) + v(n+l)(6-A9, ¢)] 1

(a¢)2 24¢ (8.6)2

- L) wg(o,9)sin 6 cos ¢ - (@ - 1)v(P(5,q) (C10)
v=0 (6 = 0) (c11)

v=0 (e=3) (C12)

v=0 (¢ = 0) (C13)

V=0 ( - %) (C14)

Because the right-hand side of the partial differential equation for v, equation (35),
could be modified in such a way that Ng is the only unknown (eq. (36)), the mesh size
could be made as fine for v as it was for Ng. For this reason, good accuracy was
obtained in the calculation of the displacement v. Thus, the values of v given in
table I are correct to one unit in the last digit retained.

The Displacement w

The displacement w normal to the surface of the sphere was calculated from the
strain-displacement relation (29). That relation, written in terms of differences and
with the stress resultant Nj, replacing the strain, is

- r(l - .LL) - V(9,¢+A¢)) - V(9y¢_A¢)
Bt N0 280 (C19)

wW =
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The results of varying the mesh size indicate that w is correct to four places to the
right of the decimal point. That number of digits is retained in table 1.

The Displacement u

As indicated in the body of the report, rather than calculating the displacement u

in the g-direction, the quantity u = sirlll 3 was calculated. The equation used for the
calculation is
_ov  2r(1 + p) ;
56 + T Ny ¢ S ¢

(C16)

U|®
-e.lC'-l

sin2¢

The behavior of this expressionat ¢ =0 is determined by expressing the numera-
tor and denominator on the right-hand side of equation (C16) in powers of ¢. In order
to do this it is first necessary to have the series expansions for Ny, N9¢, and v.

Let
Ng=Ng,o+Ng 16+ Ny 507+ . . . (C17)
— 2
N9¢ = N9¢’O + N€¢’1¢ + N9¢’2¢) + . . . (C18)
V=V Vi +v2¢>2+. . (C19)

The second term Ne,l in the Njy series is obtained in the same way that N9,0
was obtained in appendix B — that is, by substituting the series expansion for Ny into
the governing partial differential equation, equation (B1), by setting equal to zero the
coefficients of each power of ¢, and by utilizing boundary conditions which have also
been expanded in powers of ¢. The first two coefficients are

Ng,0 = - 3—8": sin 20 (C20)
Ng1=- lzi cos 36 (C21)

The first two terms in the series expansion for N9¢, are obtained in a similar
manner. All terms in equation (11) are expanded in powers of ¢ and the equation is
assumed to hold for each power of ¢. By using the results given in equations (C20) and
(C21), the quantities Nga,0 and Ngygp,1 are given by

3A
N9¢,0 = =5 cos 26 (C22)
Nps 1= - 2 sin 30 (C23)
9¢’1 = 3 m
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In the same way, by using equation (36),

vg=0 (C24)

vy = i‘%ﬂ sin 20 (C25)
_Ar(1l + p) _

Vo r (cos 36 - cos 0) (C26)

After all pertinent results are substituted into equation (C16) written as

ov av
__1,2r(1+ ) _ "2 2r(1 4+ ) 9
au _ [ 20 T Et , Nog,0(? + =55+ —m Nog,1[¢°+ - + -

%_ ¢>2+.

it is seen that there is no singularity at the pole and

o1

T = - TALL+ Wigiy g 4 sin 36) (C28)

$=0 4Et

By expanding u in powers of ¢ as was done with Ny, Neqs’ and v, the distribution
of u at ¢ =0 is determined as

(6,0 = %(1 + 1)cos 20 + ¢ (C29)

w

where c¢ 1is a constant which is affected by a rigid-body rotation. In the present analy-

sis ¢ is set equal to zero.

Because of the small differences that occur in the numerator of equation (C16) for
values of ¢ near ¢ =0, the value of 9u/0¢ adjacent to the pole was calculated with
an eight-point interpolation formula utilizing the value of 8u/8¢ calculated at the pole
and seven other values calculated at points at least two stations away from the pole.
Equation (C28) was used to obtain the value of 8u/9¢ at the pole, and (C16) was used
to calculate 8u/d0¢ at stations not adjacent to the pole.

With the above information it is possible to solve for u by using equation (C16)

and a Runge-Kutta method. A contour plot of ukt is shown in figure 11 and
rA(l + u)sin ¢

the values are given in table 1.
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N N,
IERE:
0 | 0.00000 {0.3750
1| -.07822| .3704
2| -.15451| .3566
3| -.22700] .3341
4| -.29389) .3034
5| ~.36355) .2652
6 | -.40451| ,2204
T -.44550| .1702
8 | -.47553) .1159
9| -.49384| .0587
10 { -.50000| .0000
0 {-0.11589 |0.3567
1| -.18050 .3196
2| -.23465, .2786
3| -.27904| .2377
41 -.31467| .1978
5| -.34261| .1599
6| -.36390; .1242
71 -.37946| .0908
8| -.39003| .0594
9| -.39615| .0293
10 | -.39816| .0000
0 |-0.22044 |0.3034
1| -.256896| .2433
2| -.28476] .1895
3| -.30121 .1441
4| -.31109| .1068
5| -.31655| .0770
6 -.31922] .0537
7| -.32027| .0356
8| -.32050| .0215
9| -.32044| .0101
10| -.32039| .0000
34

TABLE I.- NUMERICAL VALUES OF THE STRESS RESULTANTS AND DISPLACEMENTS

uEt vEL wEkt
rA(l + p)sin ¢ |rA(l + p) [rA(L + u)
8=0
0.375 0.00000 | 0.0000 |0
.375 .00000 .0782
.375 .00000 .1545
.375 .00000 .2270
.3175 .00000 .2939
.375 .00000 .3536
.35 .00000 .4045
.375 .00000 .4455
.375 .00000 .4755
.375 .00000 .4938
.375 .00000 .5000
6= 2”—0 radians
0.357 0.00000 | 0.0000 |O.
.334 .01734 L0773
.313 .03199 .1526
.294 .04280 2242
277 .04905 .2903
.262 .05043 .3492
.250 .04708 .3995
.240 .03946 .4400
234 .02836 .4696
.230 .01482 48717
.228 .00000 .4938
27 :
6= %0 radians

0.303 0.00000 | 0.0000 |O
.263 .03199 L0744
.226 05741 1470
195 .07498 .2159
.168 .08415 .2795
.145 .08503 .3362
127 .07826 .3847
.113 .06487 4237
.103 .04627 .4522
.097 .02406 .4696
.095 .00000 4755

Ep = % radiansjl

Nn n Ng Ngo uEt vEt wEt
A A A |rA(Ql + p)sin ¢ |TA(L + p) rAQ1 + p)
= % radians
.3750 01-0.30341|0.2204 0.220 0.00000 0.0000
3796 1( -.30951] .1517 .169 .04280 .0697
.3889 2( -.30702| .0981 125 .0'7498 .1377
.4040 3| ~.30005| .0587 .087 .09595 .2022
4224 4| -.29127| .0309 .056 .10587 .2618
.4420 5| -.28232] .0125 .031 .10552 .3150
.4607 6 -.27421| .0016 .011 .09606 .3604
4769 T| -.26753| -.0036 -.004 .07898 .3969
.4894 8| -.26259|-.0046 -.014 .05601 4236
4973 91 -.25958/-.0030 -.021 .02902 .4400
.5000 10| -.25856| .0000 -.023 .00000 .4454
9= g—g radians
3750 0(-0.35667(0.1159 0.116 0.00000 0.0000
L3670 1| -,33091| .0535 .061 .04905 .0633
.3643 2| -.30500| .0110 .016 .08415 .1250
.3666 3| -.28132|-.0159 -.021 .10587 .1836
.37 4| -.26088|-.0310 -.051 .11525 .23717
.3781 5| -.24394:-.0373 -.075 .11363 .2860
.3845 6| -.23048|-.0369 -.094 .10258 .3272
.3902 7| -.22029) -.0316 -.109 .08382 .3604
.3945 8| -.21318|-.0229 -.119 .05919 .38417
.3972 9| -.20899(-.0120 -.124 .03059 .3995
.3982 10| -.20760; .0000 -.126 .00000 .4044
8= g—g radians
.3750 0{-0.37500; 0.0000 0.000 0.00000 0.0000
.3554 1| -.32419|-.0432 -.050 .05044 .0553
.3420 2| -.28273| -.0675 -.090 .08503 .1092
.3339 3} -.24968; -.0786 -.123 .10552 .1605
.3289 4| -.22374|-.0803 -.149 .11363 .2078
.3258 5| -.20369| -.0753 -.171 .11110 .2500
.3237 6| -.18854] -.0654 -.187 .09966 .2860
.3222 7| -.17750| -.0519 -.200 08106 .3150
.3212 8| -.16999| -.0359 -.209 .05706 .3362
.3206 9] -.16564| -.0184 -.214 .02944 .3491
.3204 10| -.16421] .0000 -.216 .00000 .35635

L3750
.3447
.3223
.3057
.2929
.2826
.2742
.2676
.2626
.2596
.2586

L3750
.3352
.3052
.2818
.2627
.2468
.2334
.2225
.2144
.2093
.2076

.3750
.3211
.2907
.2618
2377
2172
.1996
.1849
L1731
.1667
.1642




TABLE L - NUMERICAL VALUES OF THE STRESS RESULTANTS AND DISPLACEMENTS — Concluded

[qs = % radians]

Al Moo | Neg uEt vEt wEt
A A rA(l + w)sin ¢ |[rA + p) |[TA(T + )
6= g—g radians
0|-0.35667|-0.1159 -0.116 0.00000 | 0.0000
1| -.29210| -.1317 -.156 .04708 .0459
2| -.24429| -.1344 -.188 .07826 .0908
3| -.20879| -.1292 -.214 .09606 .1334
4| -.18237| -.1184 ~.235 .10258 1217
5| -.16278] -.1038 -.253 .09966 .2078
6| -.14842) -.0862 -.266 .08898 2377
71 -.13818 -.0664 =277 07212 .2618
8| -.13134| -.0451 -.284 .05064 .2795
9| -.12741| -.0228 -.288 .02609 .2902
10| -.12613| .0000 -.290 .00000 .2938
17 .
a= %0 radians
0]-0.30341(-0.2204 -0.220 0.00000 | 0.0000
1| -.23862] -.2061 -.241 .03946 .0355
2] -.19347| -.1878 -.270 .06487 .0701
3| -.16144| -.1679 -.289 .07898 .1030
4| -.13843| -.1467 -.305 .08382 .1334
5| -.12181| -.1244 -.319 .08106 .1605
6] -.10987; -.1010 ~.330 07212 .1836
71 -.10149) -.0766 -.338 .05831 .2022
8| -.09595| -.0515 -.344 .04088 2158
9| -.09278| -.0259 -.347 .02104 .2242
10| -.09176 .0000 -.349 .00000 .22170
= g—g radians
0 (-0.22044|-0.3034 -0.303 0.00000 | 0.0000
1| -.16853| -.2623 ~.318 .02836 .0241
2| -.13375| -.2265 -.3338 .04627 0477
3§ -.10979] -.1952 -.346 .05601 .0701
4| -.09297| -.1662 -.357 .05919 .0908
5| -.08102} -.1383 -.367 .05706 .1092
6| -.07255] -.1109 -.376 .05064 .1250
T} -.06667| -.0834 -.382 .04088 .1376
8| -.06280| -.0558 -.387 .02863 .1469
9| -.06060| -.0279 -.390 .01472 .1526
10| -.05989| .0000 -.391 .00000 .1545
NASA-Langley, 1968 —— 31 1.-5088

Nn
A

0.3750
3204
21788
2455
2175
.1930
1718
.1533
.1389
1294
1261

.3150
.3153
.2696
2329
2017
1741
1492
1272
.1089
.0963
.0918

(=]

0.3750
.3118
.2631
2240
1905
.1603
.1325
.1068
.0840
0667
.0599

W -1 U W= O

—
(=)

O O -3 DU W= O

—
(=]

5

-0.11589
-.08712
-.06828
-.05552
-.04667
-.04045
-.03607
-.03304
-.03106
-.02994
-.02957

0.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

Nog
A

~0.3567
~.2972
~.2500
-.2114
-.1776
~.1464
-.1165
-.0872
-.0581
-.0291
.0000

-0.3750
~-.3090
-.2578
-.2168
-.1814
-.1491
-.1184
-.0885
-.0589
-.0295

.0000

uEt vEt wEt Nn
rA(l + p)sin ¢ |rA(l - p) [TA(T + 1) | A
0= 2T radians
20
-0.357 0.00000 0.0000 |0.3750
-.363 .01482 .0122 .3097
-.372 .02406 .0241 .2591
-.381 .02902 .0355 .2186
-.389 .03059 .0460 .1837
-.397 .02943 .0553 L1519
-.404 .02609 .0633 .1220
-.409 .02104 L0697 .0933
-.413 .01472 .0744 .0659
-.416 .00757 L0772 .0417
-.417 .00000 .0782 .0296
0= 120—077 radians
-0.375 0.00000 0.0000 10,3750
-.379 .00000 .0000 .3090
-.385 .00000 .0000 .2578
-.392 .00000 .0000 .2168
-.400 .00000 .0000 .1814
-.4017 .00000 .0000 .1491
-.413 .00000 .0000 .1184
-.418 .00000 .0000 .0885
-.422 .00000 .0000 .0589
-.424 .00000 .0000 .0295
-.425 .00000 .0000 .0091
35
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